
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 879
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Analysis of Component Object Model and
Common Object Request Broker Architecture

Abhishek Maheshwari, Sharnil Pandya, Aishwary Rawat

Abstract— Component Object Model and Common Object Request Broker architecture enables software components to communicate with each other.
In this paper, the various analytical aspects of COM and CORBA are explored. The similarities, differences and application in the real world are seen.
The main objective of this paper is to measure the performance of both bridges in different bridging configuration as specified in the Interworking Specifi-
cation.

Index Terms— Object broker request, Interface Definition Language, Stubs, Marshalling, Demarshalling, Client, Server.

—————————— ——————————

1 INTRODUCTION
OM, Short for Component Object Model, was introduced
by Microsoft. It enables software components to com-
municate with each other. Hence the development of the

software becomes easier as it is built from parts and not start-
ed from scratch. [1]
The interface provides a logical grouping of services. [2] In
COM, an interface is defined as a memory structure contain-
ing an array of function pointers. Hence, the term ‘Binary’ is
also used to describe COM and this property makes COM
language independent as long as the language is able to access
and define this type of function pointer structure. COM inter-
face is implemented in such a way that they are linked dynam-
ically. This makes swapping of components possible. DLL
(Dynamic Link Library) file or EXE(Executable) file are there
to package the components which are necessary to allow
communication between different components.

CORBA, short for Common Object Request Broker Archi-
tecture, was introduced by OMG (Object Management Group),
automates various network programming tasks such as object
registration, location, and activation; framing and error han-
dling; request demultiplexing; parameter marshalling and
demarshalling; and operation dispatching. CORBA uses the
ORB architecture (Object Request Broker) which provides a
mechanism for transparently communicating client requests to
target object implementations. [3] The ORB decouples the cli-
ent from the details of the method invocations. This makes
client request appear to be local procedural calls.

2 VARIOUS ASPECTS OF COM AND CORBA
There are many similarities and differences between COM and
CORBA. The strengths, weaknesses and the features that are
included in both. These aspects are across various fields like
interface, data types, Proxies, Stubs and Skeletons, marshalling
and demarshalling and Objects:

2.1 Similarities
There are various similar properties that are included in both,
COM and CORBA.

COM and CORBA uses their own IDL (Interface Definition
Language) to describe interfaces. IDL is a specification lan-
guage used to describe a software component's interface. It
describes an interface in a language-independent way, ena-
bling communication between software components that do
not share a language. In case of data types, both supports a
rich set of data types. They also support constants, enumerat-
ed types, structures and arrays.[4]

CORBA and COM rely on client stubs and server stubs to
handle remote issues. Stubs stands for a client side object par-
ticipating in the distributed object communication. COM and
CORBA generate different client stubs and server stubs from
IDL. The stub acts as a gateway for client side objects and all
outgoings requests to sever side objects that are routed
through it. [5]

They handle marshalling in client stubs and sever stubs. Users
do not need to worry about marshalling. Marshalling is the
process of transforming the memory representation of an ob-
ject to a data format suitable for storage and transmission, and
it is typically used when the data must be moved between
different parts of the computer program or from one program
to another. [6]

Object creation, object invocation and object destruction are
some of the features which are similar in both COM and
CORBA. Both use factories to create object instances. Both al-
low for method invocation similar to native environment
method invocation. COM and CORBA rely on reference count-
ing to determine when an object can be destroyed. [4]

2.2 Differences in COM and CORBA
CORBA IDL, in terms of interface, is simpler and elegant.
COM has better tool for support for creating and managing
IDL than CORBA. An interface defines a set of methods that
an object can support, without dictating anything about the
implementation. The interface marks a clear boundary be-
tween code that calls a method and the code that implements
the method. [4]

C

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Specification_language
http://en.wikipedia.org/wiki/Specification_language
http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Interface_(computer_science)

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 880
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

COM has automation types. Automation compatible interfaces
are supported in more client environments than non-
compatible interfaces. Because the non-compatible interfaces
are not guaranteed to work other than C++. Any CORBA inter-
face can be used from any CORBA client. [4]

COM client & server stubs are called as Proxy & Stub and in
CORBA called as Stub & Skeleton. COM proxy-stub DLLs are
used by all language environments. In CORBA, a separate
stub-skeleton must be generated for each ORB/language. COM
allows automation-compatible interfaces to use type library
marshaling, thus eliminating the need for customized stubs.

COM calls object handles as interface pointers and CORBA
calls as object references. CORBA supports multiple inher-
itance in the interface hierarchy. COM supports single inher-
itance only; however a COM object supports more than one
distinct interface. [4]

COM has a standard factory interface called IClassFactory
CORBA factories are customized persistent CORBA objects.
COM’s error-handling mechanism is based on HRESULT re-
turn values. CORBA supports user-defined exception types in
IDL. COM supports distributed reference counting and gar-
bage collection. CORBA reference counts are maintained sepa-
rately in the client and server [4].

2.3 Strengths of CORBA and COM
CORBA strongly supports the Unix and mainframe systems.
It’s a cross platform and a multi-vendor architecture which is
of an Industrial Standard. Excellent version of implementation
are available in the market. CORBA also binds a wide range of
programming languages. [7] The main strength of CORBA
architecture is its simpler programming interface. All the ob-
jects or interfaces can be called dynamically at run time
through a data driven interface: CORBA DII. Dynamic Invoca-
tion Interface is an API which allows dynamic construction of
CORBA object invocations. It is used at compile time when a
client does not have knowledge about the object it wants to
invoke. [7] With this interface, an argument list is marshalled,
a function is named, and a request for service is sent to the
object server. DII will usually have asynchronous mode of op-
eration. CORBA also supports multiple inheritance of interfac-
es. IDL supports multiple inheritance of interfaces. A (slightly
contrived) example is:

 // IDL
 // In for example, "bank.idl".
 // A bank account.
 interface Account {
 readonly attribute float balance;

 void makeDeposit(in float f);
 void makeWithdrawal(in float f);
 };

 // Derived from interface Account.
 interface CheckingAccount : Account {
readonly attribute float overdraftLimit;
 };

 // Derived from interface Account.
 interface DepositAccount : Account {
 };

 // Indirectly derived from interface Account.
 interface PremiumAccount :
 CheckingAccount, DepositAccount {
 }; [8]

COM has strong versioning support of interfaces; one can
easily support upward or backward compatible interfaces
on an object. Good support for fine-grained objects, with
in-process activation and no requirement for persistence
support. COM also separates "class" from "interface" --
each object/class/instance will normally support multiple
interfaces, and it's easy to switch between them.
Microsoft backs it. [7] They have lots of money, and wide-
ly used tools (on Windows platforms). MS is now encour-
aging use of .NET/SOAP, but COM is still supported. Tool
support (like within VB, VC++, J++) -- but only
with Microsoft tools on the Windows platform.

COM has more flexible pointers; CORBA object references
can only be to whole objects (as in Java), whereas COM
pointers can point into the middle of structures (as in
C++). It also has strong definition of object identity: COM
has a clearly-defined way to determine if two different in-
terface pointers really refer to the same object; even if the
two interfaces aren't related to each other in any way by
inheritance. [7]

COM gives a better Separation of Concerns. COM compo-
nents can be used locally without incurring the overhead
of distribution or ORBs.

COM and CORBA has some features supported by them
both. Support for Reflection is optional in both. COM's
TypeLibrary cannot encode everything that can be ex-
pressed in MIDL.

Actual support for asynchronous processing is weak or
absent in both. CORBA provides "one way" operations
that are so unspecified as to be practically useless (they
are not guaranteed to be reliable, or asynchronous), but
does allow asynchronous calls of synchronous methods
through the DII.

This was true a few years ago, but no longer. Recent ver-
sions of the CORBA specification provide very rich asyn-
chronous invocation mechanisms. And COM+ has sup-
port for asynchronous invocation as well.

3 CONCLUSION
Based on the analytical comparison made between COM and

IJSER

http://www.ijser.org/
http://c2.com/cgi/wiki?MicroSoft
http://c2.com/cgi/wiki?MicroSoft
http://c2.com/cgi/wiki?SeparationOfConcerns

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 881
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

CORBA, it can be seen that CORBA architecture has certain
problems associated with it that are solved using COM. The
language, platform independent and suitability for all the dis-
tributed systems led to a lot of complexity. Language mapping
is considered as “Unnatural” and there is no inheritance for
exceptions.

ACKNOWLEDGMENT
We wish to thank Nirma University for its continuous support
that helped us to do a research in this area.

REFERENCES
[1] Wikipedia- Component Object Model.
[2] ObjectBridge COM/CORBA Enterprise Client User’s Guide.
[3] Wikipedia- Common Object Request Broker Architecture.
[4] Middleware Technologies [MCA II yr, Anna University] by Antony

Arnold.
[5] Wikipedia- Class Stub.
[6] Wikipedia- Marshalling (computer Science)
[7] Wiki- COM VS CORBA
[8] IONA Technologies- Inheritence chapter 13.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Various Aspects Of COM and CORBA
	2.1 Similarities
	2.2 Differences in COM and CORBA
	2.3 Strengths of CORBA and COM

	3 Conclusion
	Acknowledgment
	References

